Qu	uesti umb	ion er		Answer	Notes	Marks
1	а	i	M1	(A) reduced AND (B) oxidised	If first column blank, M1 can be scored from words in second column: eg reduction is gain of electrons in 2nd column for A scores M2 oxidation is gain of oxygen in 2nd column for B scores M3 Both above statements would score M1 as well If M1 wrong way round, then 0/3 If 1st column has oxidation ×2 or reduction × 2, then no M1, but it will sometimes be possible to award either M2 or M3 for a correct matching statement.	1
			M2	(A) gain of electrons	If species identified, must be correct, eg not aluminium gains electrons Ignore reference to loss of oxygen	1
			M3	(B) gain of oxygen	Ignore reference to loss of electrons	1
		ii	M1	$20^{2-} \rightarrow 0_2 + 4e^{(-)}$	Both formulae correct and on correct sides of equation	1
			M2		Balancing including electrons	1
					Accept electrons lost on LHS Accept $O^{2-} \rightarrow O + 2e^{(-)}$ followed by $2O \rightarrow O_2$	
		iii		electrodes burn /get smaller / decrease (in mass) / have to be replaced	Ignore erode / corrode / wear / damage	1

Question number			Answer	Notes	Marks	
1	а	iv	M1	coke	Ignore coal / carbon	1
					Reject other raw materials such as limestone/haematite	
			M2	produces heat / exothermic (reaction)	M2 independent	1
					Accept makes carbon dioxide which	
					then produces CO/reducing agent	
	b	i		carbonating drinks / in drinks		1
			M2	soluble (in water) / reacts with water	M2 dependent on M1	1
					Accept just solubility, ignoring	
					qualifying statements such as only	
					slightly soluble, or only dissolves	
					under pressure	
			М3	fire extinguishers / putting out fires		1
			M4	denser than air / does not support combustion	Accept denser than oxygen	1
					Ignore does not burn	
					M4 dependent on M3	
					Ignore references to covering /	
					sitting on fire	
					Accept M1+M2, and M3+M4 reversed	

Question			Answer	Notes	Marks	
n	number					
1	b	ii	M1	$SO_2 + H_2O \rightarrow H_2SO_3$	Accept SO ₂ + H_2O + $\frac{1}{2}O_2 \rightarrow H_2SO_4$	1
					Do not accept unconventional	
					formulae such as SO ₃ H ₂	
			M2	adverse effect on plants/trees/crops/vegetation OR	eg kills / harms / damages / destroys / stunts growth	1
				adverse effect on fish / water animals / aquatic life OR	eg kills / harms / damages / destroys /reduces fish population	
				adverse effect on iron/steel/metal OR	eg damages / causes rusting/corrosion	
				adverse effect on stonework/limestone/marble	eg causes corrosion / damages Not just buildings/structures/statues	
					Ignore changes in pH	
					Ignore effects on animals/birds	
					Ignore just habitats	
					Do not accept	
					burning/weathering/erosion as	
					adverse effects	
					Not just affects plants/fish/etc	
		-			Do not apply list principle	

Question number			Answer	Notes	Marks
1	С	M1	$M_{\rm r}({\rm PbCO_3}) = 267 / A_{\rm r} ({\rm Pb}) = 207$	Accept 414 for Pb	1
		M2	$n(PbCO_3) / n(Pb) = 1.87 mol$	Accept 1.9	1
		М3	m(Pb) = 387 – 388 g		1
			OR		
		M1	$M_{\rm r}({\rm PbCO}_3) = 267 / A_{\rm r} ({\rm Pb}) = 207$		1
		M2	$m(Pb) = 207 \times 500$		1
			267		
		M3	m(Pb) = 387 - 388 g		1
			OR		
		M1	$M_{\rm r}({\rm PbCO}_3) = 267 / A_{\rm r} ({\rm Pb}) = 207$		1
		M2	% Pb = <u>207 × 100</u> = 77.5 %		1
			267		
		М3	$m(Pb) = 500 \times 0.775 = 387.5 g$		1
				Correct final answer with or without	
				working scores 3	
				Accept answer in kg	
				Apply ECF throughout	
				Accept other valid methods	
				774-776 scores 2	
				Total	1 7

Question number	Answer	Notes	
2 (a)	M1 coke	ignore 'carbon' / 'charcoal'	2
	M2 limestone	ignore 'calcium carbonate'	
	accept answers in either order	ignore formulae	
(b) (i)	Fe_2O_3 + 3CO \rightarrow 2Fe + 3CO ₂		2
	M1 all formulae correct		
	M2 balanced	M2 dep on M1	
(ii)	M1 iron / Fe		2
	M2 (it has) lost oxygen	M2 dep on M1 or near miss eg Fe_2O_3 accept 'iron (III) ions / Fe^{3+} has gained electrons' accept 'oxidation number of iron decreases / oxidation number of iron changes from +3 to 0'	
(c) (i)	$C + O_2 \rightarrow CO_2$		1
(ii)	C (neutralisation)		1

(d)	(i)	M1 oxygen	accept 'air'	2
		M2 water	accept 'moisture' / 'water vapour' ignore 'steam' accept answers in either order	
	(ii)	prevents oxygen/water from coming into contact with the iron	accept refs to acting as a barrier	1
(e)	(i)	galvanising	ignore 'sacrificial protection'	1
	(ii)	 M1 zinc is more reactive than iron / loses electrons more readily M2 (and therefore) corrodes in preference (to the iron) 	ignore 'sacrificial protection' accept 'reacts (with oxygen/water) in preference (to the iron)' accept refs to zinc converting iron(II) ions to iron (atoms) reject 'zinc rusts' for M2	2
(f)	(i)	(aluminium/it) is too reactive / more reactive than carbon / <u>above</u> carbon in the reactivity series	accept 'carbon is less reactive than aluminium' accept 'the temperature required is too high' ignore refs to carbon monoxide	1
	(ii)	energy costs are too great / electricity is expensive	allow 'it is cheaper to use the blast furnace' ignore refs to iron being below carbon in the reactivity series	1

Question number	Answer	Notes	Marks
3 a	mix / add / react (the two) solutions / salts together stir filter	Ignore references to volumes Accept swirl Accept description of filtration	4
	wash (with water) suitable method of drying identifying two suitable pieces of apparatus	eg warm / heat / place in oven / leave on window ledge / leave to dry / dry with filter paper or kitchen towel Not just dry Any four above for 1 mark each If M3 not scored then M4 and M5 cannot be awarded If description of evaporation of solution, then M4 and M5 cannot be awarded Any two of • beaker / flask / test tube (for mixing) • (glass) rod (for stirring) • (filter) funnel/paper (for separation) Reference to filter paper or filter funnel scores M3 and counts as one of M6 If any other substance added, then MAX 4	1

Question number		ion er	Answer	Notes	Marks
3	b	i	B (the products are both elements)		1
		ii	electrons on wrong side / should be on right /should be - 2e ⁻	Accept + in front of electrons (should be $-$)	1
			2Br should be Br ₂	Accept product is shown as a bromine atom / should be shown as a bromine molecule Equation correctly rewritten scores both marks	1
		iii	ions stop moving / ions not free to move OR	Ignore liquid becomes solid / no free ions	1
			electrons stop moving (through wires)	Accept electric current in place of electrons Reject implication that electrons stop flowing through liquid	
				Total	9 marks